Data science for business: [what you need to know about data mining and data-analytic thinking]
(Book)

Book Cover
Contributors:
Published:
Sebastopol, Calif. : O'Reilly, 2013.
Format:
Book
Edition:
1st ed.
Physical Desc:
xxi, 386 pages : illustrations ; 24 cm
Status:
ASU Main (3rd floor)
QA76.9.D343 P76 2013

Copies

Location
Call Number
Status
Last Check-In
ASU Main (3rd floor)
QA76.9.D343 P76 2013
On Shelf
May 13, 2024

Citations

APA Citation (style guide)

Provost, F., & Fawcett, T. (2013). Data science for business: [what you need to know about data mining and data-analytic thinking]. Sebastopol, Calif., O'Reilly.

Chicago / Turabian - Author Date Citation (style guide)

Provost, Foster, 1964- and Tom. Fawcett. 2013. Data Science for Business: [what You Need to Know About Data Mining and Data-analytic Thinking]. Sebastopol, Calif., O'Reilly.

Chicago / Turabian - Humanities Citation (style guide)

Provost, Foster, 1964- and Tom. Fawcett, Data Science for Business: [what You Need to Know About Data Mining and Data-analytic Thinking]. Sebastopol, Calif., O'Reilly, 2013.

MLA Citation (style guide)

Provost, Foster and Tom Fawcett. Data Science for Business: [what You Need to Know About Data Mining and Data-analytic Thinking]. Sebastopol, Calif., O'Reilly, 2013.

Note! Citation formats are based on standards as of July 2022. Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy.

Description

Provides an introduction to the fundamental principles of data science, walking the reader through the "data-analytic thinking" necessary for extracting useful knowledge and business value from collected data.

Also in This Series

More Like This

More Details

Language:
English
ISBN:
1449361323, 9781449361327

Notes

General Note
Subtitle from cover.
Bibliography
Includes bibliographical references (pages 361-368) and index.
Description
Provides an introduction to the fundamental principles of data science, walking the reader through the "data-analytic thinking" necessary for extracting useful knowledge and business value from collected data.

More Copies In Prospector

Loading Prospector Copies...

Staff View

Grouped Work ID:
a0a953c9-6c6d-e928-3e58-d98cd60dce82
Go To Grouped Work

Record Information

Last Sierra Extract TimeNov 27, 2024 08:32:54 PM
Last File Modification TimeNov 27, 2024 08:33:10 PM
Last Grouped Work Modification TimeDec 07, 2024 10:52:25 PM

MARC Record

LEADER05094cam a2200841Ia 4500
001844460899
003OCoLC
00520180522110838.0
008130524s2013    caua     b    001 0 eng  
0167 |a 016444020 |2 Uk
019 |a 844728943 |a 858076340 |a 869799113 |a 877951232
020 |a 1449361323 |q (pbk.)
020 |a 9781449361327 |q (pbk.)
035 |a (OCoLC)844460899 |z (OCoLC)844728943 |z (OCoLC)858076340 |z (OCoLC)869799113 |z (OCoLC)877951232
037 |b Oreilly & Associates Inc, C/O Ingram Pub Services 1 Ingram Blvd, LA Vergne, TN, USA, 37086
040 |a YDXCP |b eng |c YDXCP |d BDX |d UKMGB |d BTCTA |d DPL |d EGM |d ZCU |d FJD |d VP@ |d OCLCF |d KMS |d MNA |d DAC |d SBM |d OCLCQ |d VVL |d CHVBK |d OCLCQ |d TOH |d CDX |d BEDGE |d NDD |d NRC |d OCLCO |d PHUST |d OCLCO |d N3T |d OCLCO |d OCLCQ |d OCLCO |d OCLCA |d GILDS |d IOK |d EZ9 |d FYM |d COM
049 |a COMA
0504 |a QA76.9.D343 |b P76 2013
08204 |a 006.312 |2 23
1001 |a Provost, Foster, |d 1964- |0 https://id.loc.gov/authorities/names/n00016761
24510 |a Data science for business : |b [what you need to know about data mining and data-analytic thinking] / |c Foster Provost and Tom Fawcett.
24614 |a What you need to know about data mining and data-analytic thinking
250 |a 1st ed.
2641 |a Sebastopol, Calif. : |b O'Reilly, |c 2013.
300 |a xxi, 386 pages : |b illustrations ; |c 24 cm
336 |a text |b txt |2 rdacontent
337 |a unmediated |b n |2 rdamedia
338 |a volume |b nc |2 rdacarrier
500 |a Subtitle from cover.
504 |a Includes bibliographical references (pages 361-368) and index.
5050 |a Introduction : data-analytic thinking -- Business problems and data science solutions -- Introduction to predictive modeling : from correlation to supervised segmentation -- Fitting a model to data -- Overfitting and its avoidance -- Similarity, neighbors, and clusters -- Decision analytic thinking I : what is a good model? -- Visualizing model performance -- Evidence and probabilities -- Representing and mining text -- Decision analytic thinking II : toward analytical engineering -- Other data science tasks and techniques -- Data science and business strategy -- Conclusion.
520 |a Provides an introduction to the fundamental principles of data science, walking the reader through the "data-analytic thinking" necessary for extracting useful knowledge and business value from collected data.
6500 |a Data mining. |0 https://id.loc.gov/authorities/subjects/sh97002073
6500 |a Big data. |0 https://id.loc.gov/authorities/subjects/sh2012003227
6500 |a Information science. |0 https://id.loc.gov/authorities/subjects/sh85066150
6500 |a Business |x Data processing. |0 https://id.loc.gov/authorities/subjects/sh85018264
6507 |a Sciences de l'information. |2 eclas
6507 |a Big data. |2 fast |0 (OCoLC)fst01892965
6507 |a Business |x Data processing. |2 fast |0 (OCoLC)fst00842293
6507 |a Data mining. |2 fast |0 (OCoLC)fst00887946
6507 |a Information science. |2 fast |0 (OCoLC)fst00972640
6507 |a Data Mining. |2 gnd |0 (DE-588)4428654-5
6507 |a Massendaten. |2 gnd |0 (DE-588)4802620-7
6507 |a Business Intelligence. |2 gnd |0 (DE-588)4588307-5
6504 |a Massendaten. |0 (DE-588)4802620-7
6500 |a Business intelligence. |0 https://id.loc.gov/authorities/subjects/sh85018300
6504 |a Sciences de l'information.
6502 |a Data Mining. |0 https://id.nlm.nih.gov/mesh/D057225
6502 |a Information Science. |0 https://id.nlm.nih.gov/mesh/D007254
6502 |a Commerce. |0 https://id.nlm.nih.gov/mesh/D003132
6502 |a Electronic Data Processing. |0 https://id.nlm.nih.gov/mesh/D001330
7001 |a Fawcett, Tom. |0 https://id.loc.gov/authorities/names/n2004016206
85642 |z Additional Information at Google Books |u http://books.google.com/books?isbn=1449361323
907 |a .b41596274
948 |a MARCIVE Comp, in 2022.12
948 |a MARCIVE Comp, 2018.12
948 |a MARCIVE Q2, 2018
948 |a MARCIVE August, 2017
948 |a MARCIVE extract Aug 5, 2017
989 |1 .i82523253 |b 1010002112506 |d as |g - |m  |h 19 |x 1 |t 0 |i 15 |j 18 |k 140213 |n 05-13-2024 19:39 |o - |a QA76.9.D343 P76 2013
989 |1 .i92045674 |b 1160002678662 |d vlnf |g n |m 180411 |h 11 |x 0 |t 0 |i 7 |j 70 |k 150407 |n 06-22-2017 18:23 |o - |a 006.312 |r PRO
989 |1 .i119366915 |b 1080006327932 |d culmb |g - |m  |h 4 |x 2 |t 0 |i 0 |j 18 |k 180522 |n 04-26-2024 18:16 |o - |a QA76.9.D343 |r P76 2013
989 |1 .i119853553 |b 1160002842547 |d vlnf |g - |m  |h 4 |x 0 |t 0 |i 5 |j 70 |k 180713 |n 09-06-2022 22:56 |o - |a 006.312 |r PRO
989 |1 .i12379867x |b 31813004881081 |d below |g - |m  |h 29 |x 0 |t 0 |i 9 |j 300 |k 190216 |n 04-14-2021 18:30 |o - |a 006.312 PROVOST
994 |a C0 |b COM
995 |a Loaded with m2btab.ltiac in 2022.12
995 |a Loaded with m2btab.ltiac in 2018.12
995 |a Loaded with m2btab.ltiac in 2018.08
99500 |a Exported from Connexion by CMU and loaded with m2btab.b in 2018.05
995 |a Loaded with m2btab.ltiac in 2017.09
995 |a Loaded with m2btab.click in 2018.02
995 |a Initial Bemis load m2btab.test019 in 2019.02
998 |e - |f eng |a as |a be |a cu |a vl