Machine learning : a probabilistic perspective
(Book)
Murphy, K. P. (2012). Machine learning: a probabilistic perspective. Cambridge, MA: MIT Press.
Chicago / Turabian - Author Date Citation (style guide)Murphy, Kevin P., 1970-. 2012. Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT Press.
Chicago / Turabian - Humanities Citation (style guide)Murphy, Kevin P., 1970-, Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT Press, 2012.
MLA Citation (style guide)Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT Press, 2012. Print.
"This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online"--Back cover.
Notes
Last File Modification Time | Mar 13, 2019 02:21:18 AM |
---|---|
Last Grouped Work Modification Time | May 08, 2019 03:13:50 AM |
MARC Record
LEADER | 03942cam a2200481 a 4500 | ||
---|---|---|---|
001 | ocn781277861 | ||
003 | OCoLC | ||
005 | 20140201053401.0 | ||
008 | 120315t20122012maua b 001 0 eng | ||
010 | |a 2012004558 | ||
016 | 7 | |a 016102606 |2 Uk | |
020 | |a 9780262018029 |q hardcover |q alkaline paper | ||
020 | |a 0262018020 |q hardcover |q alkaline paper | ||
035 | |a (OCoLC)781277861 | ||
040 | |a DLC |b eng |c DLC |d YDX |d BTCTA |d UKMGB |d BDX |d YDXCP |d OCLCO |d CDX |d PUL |d IXA |d Z@L |d COO |d MYG |d WEX |d OCLCF |d STF |d CLZ | ||
042 | |a pcc | ||
049 | |a CLZA | ||
050 | 0 | 0 | |a Q325.5 |b .M87 2012 |
082 | 0 | 0 | |a 006.3/1 |2 23 |
100 | 1 | |a Murphy, Kevin P., |d 1970- |0 http://id.loc.gov/authorities/names/n2012018568. | |
245 | 1 | 0 | |a Machine learning : |b a probabilistic perspective / |c Kevin P. Murphy. |
264 | 1 | |a Cambridge, MA : |b MIT Press, |c [2012] | |
264 | 4 | |c ©2012. | |
300 | |a xxix, 1067 pages : |b illustrations (some color) ; |c 24 cm. | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a unmediated |b n |2 rdamedia. | ||
338 | |a volume |b nc |2 rdacarrier. | ||
490 | 1 | |a Adaptive computation and machine learning series. | |
504 | |a Includes bibliographical references (pages [1015]-1045) and indexes. | ||
505 | 0 | |a Probability -- Generative models for discrete data -- Gaussian models -- Bayesian statistics -- Frequentist statistics -- Linear regression -- Logistic regression -- Generalized linear models and the exponential family -- Directed graphical models (Bayes nets) -- Mixture models and the EM algorithm -- Latent linear models -- Sparse linear models -- Kernels -- Gaussian processes -- Adaptive basis function models -- Markov and hidden Markov models -- State space models -- Undirected graphical models (Markov random fields) -- Exact inference for graphical models -- Variational inference -- More variational inference -- Monte Carlo inference -- Markov chain Monte Carlo (MCMC) inference -- Clustering -- Graphical model structure learning -- Latent variable models for discrete data -- Deep learning -- Notation. | |
520 | |a "This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online"--Back cover. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324. | |
650 | 0 | |a Probabilities. |0 http://id.loc.gov/authorities/subjects/sh85107090. | |
650 | 7 | |a Machine learning. |2 fast |0 (OCoLC)fst01004795. | |
650 | 7 | |a Probabilities. |2 fast |0 (OCoLC)fst01077737. | |
830 | 0 | |a Adaptive computation and machine learning. |0 http://id.loc.gov/authorities/names/n97066095. | |
907 | |a .b41566610 |b as |c - |d 140201 |e 180424 | ||
998 | |a as |b 140201 |c m |d a |e - |f eng |g mau |h 0 |i 0 | ||
948 | |a MARCIVE August, 2017 | ||
948 | |a MARCIVE extract Aug 5, 2017 | ||
994 | |a C0 |b CLZ | ||
995 | |a Loaded with m2btab.ltiac in 2017.08 | ||
989 | |a Q325.5 .M87 2012 |d as |b 1010002114256 |e 01-28-2019 12:12 |f - - |g - |h 22 |i 7 |j 18 |k 140201 |l $0.00 |m |n 03-12-2019 15:54 |o - |p 61 |q 61 |t 4 |x 7 |1 .i82427240 |